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In the Murnaghan approximation, an isothermal relation between pressure (P) 
and volume (V) for solids is derived from the assumption that the isothermal 
bulk modulus (B) is a linear function of P. This paper presents a thermo- 
dynamic analysis of a generalized form of the equation, based on treating all 
its various parameters [viz., V, B, and (aB/aP)r at P=O] as functions of 
temperature. Extending a previous study, the effect of T upon (aB/aP)r is 

accounted for by using a dimensionless parameter introduced by us, which is 
used in formulating general expressions for the volume dependence of various 
thermophysical quantities, viz., the thermal expansion coefficient (~t), the product 
0tB, and the Gr/ineisen and Anderson-Grfineisen parameters. Some combi- 
nations of these parameters are identified, which show a simple dependence 
upon P. The new expressions are used in analyzing current approximations 
and the behavior of the solid in the low-compression range. In particular, an 
expression for ~t at high P is reported which generalizes the Anderson equation 
and previous results by us. 

KEY WORDS: Anderson-Gr/ineisen; bulk modulus; equation of state; expan- 
sivity; high pressure; Murnaghan equation. 

1. I N T R O D U C T I O N  

The equa t ion  of  s tate (EOS)  of  solids has  been the subject  of  extensive 
research [ 1 -5] .  A cons iderab le  a m o u n t  of  work  has  been devo ted  to the 
relat ion between pressure  (P)  and  vo lume (V) at  0 K,  which has recent ly 
been t rea ted  using f irs t-principles ca lcula t ions  [6,  7]  and  using pheno-  
rnenological  me thods  [ 8-13 ] tha t  rely on regular i t ies  in the b ind ing  energy 
for solids E14, 15]. In  par t icu la r ,  s tar t ing from a scal ing of  the b ind ing  
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energy function, Rose et al. [9 ] developed a P-V relation that accounted 
for the behavior of solids of various types. In addition to the work on the 
EOS at zero Kelvin, there has been an increasing interest in the treatment 
of temperature (T) effects [ 16-20] on the isothermal EOS, which may be 
related to the progress of the experimental methods to study the properties 
at high temperatures [21-28]. The present paper is concerned with the 
thermodynamic basis of incorporating temperature effects on a particular 
isothermal EOS. Motivated by a renewed interest in modeling the P-V-T 
surface and the thermal properties of metallic and nonmetallic systems in 
the low-compression range [29-35], we focus here on the effects of T upon 
the so-called Murnaghan EOS. 

In the Murnaghan approximation [36] to the isothermal EOS of 
solids a relation between P and V is derived from the assumption that the 
isothermal bulk modulus varies linearly with P. Since the approximation 
neglects the variation of (OB/aP)r with P [11, 12, 37, 38], the use of the 
Murnaghan EOS has been restricted to the low-compression range, where 
it has long been considered as a useful tool in the representation, analysis 
and estimation of P-V data for solids of various types [38-41 ]. This is due 
partly to the fact that (OB/aP)r at zero pressure is often [42, 43] available 
from compression or ultrasonic measurements or has been estimated (e.g., 
for various elements [44]). The Murnaghan approximation also. shows 
attractive properties if one wishes to describe the pressure contribution 
to the Gibbs energy (G) of the solid. It has been shown [45] that the 
equation leads to a closed-form expression for that contribution, which 
facilitates the modeling of the G function for the various phases of a sub- 
stance, the use of that information in thermodynamic databases [46], and 
the calculation of pressure effects on the phase equilibria [34, 35]. The 
Murnaghan EOS also leads to a closed-form expression for the volume 
dependence of the Helmholtz energy of the solid [45]. 

The possibility of generalizing the isothermal Murnaghan EOS by 
including temperature effects was early considered by Gilvarry [47] and 
Birch [48], and a temperature-dependent form has been presented else- 
where [45] which takes into account the variation with temperature of V 
and B. That form was applied in evaluations of the G(T, P) functions for 
various metals, which accounted for the experimental information on the 
thermodynamic properties at zero pressure and the low-pressure part of 
the P-T phase diagram [34, 35,49, 50]. The equation [45] was also 
employed, as a first approximation, in demonstrating the possibility of 
treating shock-wave data by purely thermodynamic methods, and without 
invoking the Mie-Grfineisen EOS [ 51 ]. 

Recently, there have been suggestions [29-31 ] of alternative ways of 
including the variation with T of V and B in the Murnaghan EOS while 



Murnaghan Equation of State for Solids 1011 

assuming, as in the initial formulation [45], that (OB/OP)r remains con- 
stant at P = 0. This approximation has been justified by the lack of detailed 
information on the effect of T upon (OB/OP)r. However, Vinet et al. [ 18] 
have shown that a temperature-dependent (OB/OP)r is obtained when the 
"universal" EOS of Rose et al. [9] is combined with an often applied (cf. 
Section 3.3) approximation about thermal pressure of solids. The work by 
Vinet et al. [ 18] concerns various types of solids, and suggests that in 
certain cases (OB/OP)r could vary significantly with T between 0 K and the 
melting point. Motivated by their results, and with the promising develop- 
ment of the experimental techniques in mind, we have investigated the 
thermodynamics of a formulation of the Murnaghan EOS where the varia- 
tion of (OB/OP)r with T is accounted for. 

As a difference from previous analyses of data on specific systems, here 
we study the general thermodynamic properties of the Munaghan EOS, 
because of the practical importance of the equation, and as a convenient 
first step toward the treatment of the large compression range. Extending 
recent work on the volume effects upon the thermal properties of high- 
melting [52] and ferromagnetic [53] elements, and the EOS of solids 
[54, 55], we focus on the relations between the volume dependence of 
various properties and the parameters accounting for the effect of T. The 
temperature dependence of (OB/OP)r is treated using a new dimensionless 
parameter introduced by us, and its connections with other currently used 
quantities (e.g., the Griineisen and Anderson-Gr/ineisen parameters) are 
considered. Moreover, the general relations which are derived here are 
applied in examining current approximations about the P-V-T behavior of 
solids. 

The structure of the paper is as follows. In Section 2 we derive the 
basic relations, which involve 0~ and B, and in Section 3 we apply our 
results in a study of various thermodynamic parameters for solids. Next we 
examine the volume dependence of 0~ and obtain an expression which 
generalizes previous work by Anderson [39] and by us [54]. Finally, we 
turn to the volume dependence of the Grfineisen parameter. The paper 
ends with a brief summary in Section 4. 

2. BASIC THERMODYNAMIC RELATIONS 

2.1. Isothermal Bulk Modulus 

We express the isothermal bulk modulus B 

B(T, P ) = - V  (O~---V]r (I) 
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as a linear function of P, 

B(T, P)=B(T, O) + nP (2) 

where B(T, 0) is the bulk modulus at zero pressure and the pressure- 
independent parameter n is a function of temperature. Differentiating 
Eq. (2) with respect to T yields 

oe) dB(T, O) . {dn'~ 
e-  dT +~-J-T) p (3) 

which can be written as 

(OB)o_T ~ = _~(T, O) B(T, O) [ 5(T, O)_fl(T, O) B(+, O~ ] (4) 

where cx represents the thermal expansion coefficient, 

~x(T, P ) = ~  e 

5 is the so-called isothermal Anderson-Grfineisen parameter 

5(T, P )=  - ~  b-~ p (6) 

and fl(T, O) is dimensionless quantity introduced by us, 

/~(r, 0) -0c(T, 0-----) d-Z (7) 

In the remainder of the work we are interested in accounting for the 
pressure effect upon various properties of the solid in terms of fl and other 
dimensionless parameters such as n and 5. 

According to Eq. (4) the effect of temperature upon B(T, P) depends 
on the parameters 5(T, 0) and fl(T, 0). In the most frequent case B(T, O) 
decreases with increasing temperature and 0c(T, 0) is positive, i.e., 5(T, 0) is 
a positive quantity. Some insight on the behavior of fl(T, 0) may be gained 
from information on the temperature dependence of (OB/OP)r, which is 
available for various substances. Data on solid Ne, Ar, Kr, and Xe 
analyzed by Birch [56] shows an increase with T in the pressure derivative 
of B at P = 0, and a similar behavior is shown by NaC1 [ 17, 57], CsI [58], 
and CaF 2 above 195 K [59], whereas for MgO, the effect of T upon 
(OB/OP)r seems to be negligible [60]. Some information on Cu [61] 
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suggests a decrease of n with increasing T below room temperature. 
Contrasting with that, a thermodynamic study [62] of shock-wave infor- 
mation for Mo, comprising Hugoniot data obtained starting at 293 K [ 63 ] 
and 1673 K [27], based on the method of analysis presented in Ref. 51 and 
letting n vary linearly with T above room temperature, indicates that 
dn/dT> O. In view of these results we do not make any assumption about 
the sign of dn/dT and p(T, 0) but treat them as quantities that, in principle, 
can have either sign. 

For the particular case where fl(T, 0)>  0 and--as usual--a(T, 0) and 
g(T, 0) are positive, Eq. (4) predicts that the rate of decrease in B with 
increasing T gets smaller at higher pressures and becomes zero at the 
pressure 

p ,  _ ~ .  u~, B( T, 0) (8) 
fit , ) 

The consequences of this result on the behavior of the thermal expan- 
sivity at high P are examined in the next section. 

2.2. Thermal Expansion Coefficient 

Integrating Eq. (2) at constant temperature yields 

V( T, P) [ P ]-'/" 
V(T, 0) = l + n ~  (9) 

which leads to the following relation for the thermal expansion coefficient 0~ 
[Eq. (5)]: 

o:(T, P) 1 + [n--g(T, O)][P/B(T, 0)] 
+fl(T, 0) ~0I(T , P)  (10) oL(T, O) -- 1 +n[P/B(T, 0)] 

where g and fl(T, 0) are defined by Eqs. (6) and (7), respectively, and 

e n[el~(~, o)3 l, 

In the following we examine the predictions of Eq. (10), starting with the 
behavior at low pressures. In particular, we consider the limiting condition 
P--*0 and approximate Eq.(10) with a series expansion in powers of 
[ P/B( T, 0) ]. We obtain 

~ (~ , ' /  [ P 1 [ ~  (~)  ] [  , ] ~ ~  ~(r, 0) - 1 - 6 ( r ,  0) + n6(r, 0) + ~(r ,  0) + . . .  

(12) 
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The first two terms of Eq. (12) reproduce an equation for the thermal 
expansivity reported long ago by Birch [64]. The present study shows that 
the temperature dependence of n, described by fl(T, 0), is involved in the 
second-order correction to his approximation. A consideration of the 
higher-order corrections in Eq. (12), which are given by the general 
formula 

§ 
i = 0  

i + 2  

(13) 

suggests that the importance of fl(T, 0) in determining the deviations from 
the linear behavior at low P will increase with the ratio fl( T, 0)/nd~( T, 0). 

2.3. Behavior of ~t(T, P) at High Pressures 

Whereas the choice of the Murnaghan equation originates in our 
interest in the thermodynamics of the low-compression range, we extend 
the analysis of Eq. (10) by examining its mathematical behavior at very 
large P, since that leads to additional insight into the properties of the 
generalized formulation, and the consequences of accounting for the tem- 
perature dependence ofn. 

Equation (I0) describes the effect of pressure on cc( T, P)/ct(T, 0) as the 
sum of two terms. The first term does not involve fl(T, 0), but ~(T, 0). 
In the usual case d~(T, 0)>0,  and that term decreases with increasing 
pressure from the value 1 at P = 0 ,  down to the value [n-~(T,  0) l /n=  
1 - [~ (T ,  0)/17] at extremely high P. The second term in Eq. (10) is the 
product of the purely temperature-dependent quantity fl(T, 0) times q~l, 
which is the function of T and P defined by Eq. (11 ). In Fig. 1 we plot 
~ot(T, P) versus P/B(T, 0), for various values ofn. Since opt(T, P) is positive 
and increases with P/B(T,O), the second term in Eq.(10) will give a 
positive contribution to a(T, P)/a(T, O) if fl(T, 0 ) > 0  and a negative 
contribution if fl( T, 0) < 0. As a consequence, in the case where fl( T, 0) > 0 
and ~(T, 0)>0,  the variation of co(T, P) with P will be determined by the 
competing effects of the two terms in Eq. (10), and there is the possibility 
of a minimum in the 0c(T, P) versus P function. We examine this possibility 
further by considering the pressure derivative ofcc The Maxwell relation 

~-fijr=~_ (~T)e (14) 
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Fig. 1. The quantity ~p~(T,P) defined by E q . ( l l )  
versus the ratio P/B(T, 0), for various values of the 
parameter 11. 

implies that the minimum in a occurs at a pressure such that (OB/OT)e is 
zero, which corresponds to the critical pressure P* introduced in the 
previous section [Eq. (8)]. By inserting this pressure value in Eq. (10) we 
evaluate the minimum a(T, P)/oc(T, 0) ratio as 

6(T, 0) 1 cz(T,P*) n-5(T'O) +fl(T'O)ln l + n  (15) 
0c( T, 0) - n n- ~ J  

The first term in Eq. (15) is the limiting oc(T, P)/oc(T, 0) ratio given by the 
Murnaghan approximation for P---, oo when n is independent of T[54] .  
That ratio is negative if n < 6(T, 0). In spite of that, Eq. (15) predicts that 

~(T, P*)_ ^ 
- - - - -  # o  (16) 
o~(T, O) 
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Fig. 2. The ratio n/J(T, 0) which satisfies Eq.(17) 
with the equality sign versus the ratio J( T, O)/fl(T, 0), 
for various values of the parameter n. 

if the ratio n/~(T, 0), being less than unity, is large enough to satisfy the 
condition 

n ~(T, 0)] / ~(T, 0)'~ 
~ ( T , - ~ > ~ X - ( l n [ X + n  fl(T,O)j/n-~--,- ,~) (17) 

Values of the n/~( T, 0 ) ratio satisfying Eq. (17) with the equality sign are plotted 
in Fig.2 versus ~(T,O)/fl(T,O) for various values of n. Taking, for instance, 
~(T, O)/fl(T, 0) = 1 and n =4,  we have from Fig. 2 that ~x(T, P*)/o~(T, O) = 0 if 
n/~(T, 0) - 0.6. Larger values of n/,~(T, 0) and the same ~(T, O)/fl(T, O) will 
make o~( T, P*)/o~(T, 0)>  0, which in the usual case 0~( T, 0 )>  0 implies that 
~(T, P) will be positive at all pressures. According to Fig. 2, the smallest 
n/~(T, 0) ratios leading to 0t(T, P* )>  0 for other values of n decrease rapidly 
with the relation ~(T, O)/fl(T, 0), in particular, if J(T, O)/fl(T, 0) < 3. In Sec- 
tion 3.5 we show that the condition ~(T, O)/fl(T, O) = 1In leads to a particularly 
simple expression for the volume dependence of the thermodynamic Griineisen 
parameter in the Murnaghan approximation. Using Eq. (17) we predict for 
that case a(T, P*)/o~(T, O) > 0 ifn/~(T, 0) > 1 -- In 2 = 0.31. 

3. ANALYSIS OF THERMODYNAMIC PARAMETERS FOR SOLIDS 

3.1. Pressure Effects on the Quantity =B 

The properties of the product ~B are of interest in analyzing the 
temperature dependence of the so-called thermal pressure of solids. That 
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dependence is usually described by mearis of the quantity (OP/OT) v, which 
is related to the product ~B by the identity 

( ~ T ) v = ~ B  (18) 

Here we derive a relation describing the effect of P upon ~tB. By 
combining Eqs. (2) and (10), we obtain 

o~(T, P) B(T, P) e 
= 1 + In  -5(7, 0)] - - + f l ( T ,  O) cp2(T, P) (19) 

o~(T, O) B(T, O) B(T, O) 

where 

~o2(T,P) = - l+nB(-----~,O~ ~o,(T,P) (20) 

and cpl(T, P) is defmed by Eq. (11). In Fig. 3 we plot (P2 versus P/B(T, 0), 
for various values of n. Equation (19) describes the pressure dependence of 
�9 B as the sum of two contributions. The first contribution is proportional 
to P, and is positive if n > 5(T, 0) and negative if n < 5(T, 0). The second 
contribution is the product of the quantity cp2, which is positive and 
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1.5 n : 3  

n=4 

11=5 

1.0 n :6  
n :7  

0.5 

0 
1 2 3 

P/B (T.O) 

Fig. 3. The quantity ff2(T, P) defined by Eq. (20) 
versus the ratio P/B(T, 0), for various values of the 
parameter n. 
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increases with P (Fig. 3), times the parameter fl(T, 0), which measures 
the temperature dependence of n I-Eq. (7)] and can have either sign 
(Section 2.1 ). 

The role of fl(T, 0) in determining the pressure effects on the proper- 
ties of the solid may be further illustrated by the predictions of Eq. (19) 
when P---, 0. Keeping the leading terms of an expansion of ~02(T, P) in 
powers of P/B(T, 0), we write 

~x(T'P) B(T'P),~I [ P ] 
oL(T, O) B(T, O) + [n--g(T, 0)] 

The first two terms in Eq. (21) reproduce the results of Ref. 45 for the 
Murnaghan approximation when n is independent of T. The present 
treatment predicts that the temperature dependence of n will be reflected in 
a deviation from the linear relation between eB and [P/B(T, 0)] when 
P--,0. In particular, fl(T, 0) is directly related to the coefficient of the 
second-order correction that linear variation, whereas the higher-order 
terms are also dependent upon the values ofn. This is illustrated by the 
higher-order terms of the expansion of Eq. (19) in powers of P/B(T, O) 
which are given by the general formula 

o~(T,P) B(T,P) [ p ] 
o~(T,O) B(T,O) ~ 1 + [ n - J ( T ,  0)] 

(-1)'.n' [ p ],+2 
+fl(T,O) 2 (/--~-1)(--~--2i ~ (22) 

i = 0  

The pressure dependence of aB, as given by Eq. (19), is discussed 
further in Section 3.3. 

3.2. Pressure Effects on the Anderson-Griineisen Parameter 

The isothermal Anderson-Grfineisen parameter g, which is defined by 
Eq. (6), and the related parameter ~,, which is obtained in a similar way 
from the isentropic bulk modulus B,, are useful quantities in studying 
properties related to the anharmonic behavior of solids, and have been the 
subject of considerable interest [39, 54, 65-76]. In the present study we 
have focused on the relations between g and three thermodynamic proper- 
ties, viz., the thermal expansion coefficient e, the product aB, and the 



Murnaghan Equation of State for Solids 1019 

thermodynamic Griineisen parameter. We start by deriving a relation for 
the pressure dependence of 0. Using Eqs. (4) and (19) we obtain 

O(T, P) 1 - [fl(T, O)/O(T, O)][P/B(T, 0)] (23) 
O( T, O) - 1 + In --5( T, O) ][ P/B( T, 0)] + fl( T, 0) ~02(T, P) 

In connection with the modeling of the thermal expansivity at high 
pressure (Section 3.4), it is sometimes [39] assumed that O is independent 
of P. Equation (23) shows that such approximation will hold exactly at all 
pressures if the parameters of the Murnaghan equation satisfy the conditions 

and 

fl(T, 0) = 0 (24) 

n = 6 (25) 

Equation (24) implies that the pressure-independent parameter n is 
also independent of T, i.e., that n is a constant. It follows from Eqs. (24) 
and (25) that in the Murnaghan approximation the condition that O is 
independent of P at all temperatures implies that 0 is a constant, identical 
to n, the pressure derivative of B [ 54, 77 ]. If n-O( T, 0) > 0 and fl( T, 0) > 0, 
the approximation O(T,P)=O(T,O) with 0(T, 0 ) > 0  leads to a larger 
6(T, P) than given by the Murnaghan equation and leads to a smaller 
3( T, P) if n-O( T, 0) < 0 and fl( T, 0) < 0. 

The properties of the O(T, P)/O(T, 0) ratio when fl(T, 0 ) = 0  and n ~ 0  
have been discussed elsewhere [54], and it remains to examine the case 
where n varies with T in such a way that the relation n=O(T, 0) applies. 
That case is discussed in the following in connection with the behavior of 
the solid when P ~ 0 .  An expansion of Eq. (23) in powers of P/B(T, O) 
yields 

O(T, 0) -" 1 -- n-0(T, 0 ) + ~ j  

P Z _ l  +{[n-O(T,O)][n-O(T, ) + ~ J  2 JLB(T, 0)3 

- [ E.- o(r, o)] {[,,-o(r, o)1 

fl(T, 0)] x [.-0(T, 0)+ ~(---f~, 0~j-fl(T, 0)} 

-f l (T,  0) n +  + . - .  (26) 

g40/16/4- 2 
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As a difference from o~( T, P ) /a( T, 0) [Eq. (12)] and o~( T, P) B( T, P ) / 
~x(T, O) B(T, 0) [Eq. (21)], the effect of pressure on 6(T, P)/6(T, 0) depends 
upon fl(T,O) already in the linear approximation. If n=6(T,  0) (and 
fl(T, 0) 4:0), Eq. (26) reduces to 

~(T'P),~, 1 [," 7: a(T, O) - L ~ J L ~ J  b'(T,O) ~ 

+fl(T'O)[6+(~)fl(T'O)][B(T,O~]3+ cS(T, 0)J " ' "  (27) 

i.e., the effect of P upon 5(T, P) is predicted to depend, to the second order 
in PIB(T, 0), on the parameters fl(T, 0) and O(T, 0), only. For the usual 
case ~(T, 0)> 0, Eq. (27) predicts that at sufficiently low pressures, ~(T, P) 
will decrease with PIB(T, O) if fl(T, 0 ) > 0  but increase with PIB(T, 0) if 
/~(r, o) < 0, 

3.3. Relations Between ~,B and 

A general relation between ~B and 6 can be obtained by derivating the 
product 0tB with respect to P and taking into account Eqs. (6) and (14). 
We find 

Extrapolations of P-V-T data have often [78-80] been based on the 
observation that for various types of solids (i.e., rare-gas solids [81], NaCI 
[17,82], LiF, NaF, KF, and CsCI [83,84], MgO [85,86], various 
minerals [79, 80] the alkali metals [87, 88], and Cu [61]), the volume 
dependence of the product ctB at constant T seems to be very small, i.e., 

s 0  
T=~L  a_p J~ 

(29) 

Equation (28) [with ~(T, P ) #  0] indicates that Eq. (29) is fulfilled exactly 
when 

aB) = a(T, P) (30) 
~ T  

i.e., the functions of T and P (OB/OP)r and ~(T, P) are the same. In the 
Murnaghan approximation (OB/OP)r is independent of P, and Eq. (30) 
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requires 6 to be independent of P. That will be the case if Eqs. (24) 
and (25) apply. If those equations do not apply, the approximation 
a(T, P) B(T, P) =a(T,  0) B(T, 0) overestimates o~(T, P) B(T, P) compared 
with the Murnaghan equation if n-6(T, O) and fl(T, 0) are negative and 
underestimates ot(T,P)B(T,P) if n-8(T, 0) and fl(T, 0) are positive. If 
n-f (T, 0) and fl(T, 0) have different signs there is the possibility of a partial 
cancellation between the last two terms on the right-hand side of Eq. (19). 

By combining Eqs. (19) and (23) we obtain 

a(T, P) B(T, P) 6(T, P) 
~(T, O) e(r, o) 6(T, O) 

- 1 - I  fl(T, 0)1 P 
L6(T, o)J B(T, O) 

(31) 

Equation (31) summarizes our results about the effects of pressure 
upon the quantities 0q B, and 6 of a solid that obeys the temperature- 
dependent Murnaghan equation of state. It shows that the product ~B6 
varies linearly with pressure, decreasing with increasing P if the ratio 
fl(T,O)/6(T,O) is positive and increasing with P if the ratio is negative. 
When n is independent of temperature and 0~(T, 0 )#0 ,  we have from 
Eq. (7) fl(T, 0) =0, and Eq. (31) takes the form 

o~(T, P) B(T, P) 6(T, P) =k(T)  (32) 

where k(T) is only a function of temperature. 

3.4. Relations Between ~, 6, and V 

The analysis of the thermal expansivity at high pressures has some- 
times [39, 48, 77] been made in terms of a relation between a and V. 
A relation of that kind can be obtained from the present results by starting 
from Eq.(31) and eliminating the ratio B(T,P)/B(T,O) by means of 
Eqs. (2) and (9). We obtain 

oc(T,P) 6(T,P) oc(T,O) 6(T,O) ( _[fl(T,O)] P } 
V"(T,P) - V"(T,O) 1 LS(T, 0)J ~ (33) 

Equation (33) is proposed here as the most general relation between 
c~ and V that follows from the Murnaghan approximation. If the n 
parameter if independent of T and ~x(T,O)r we have from Eq. (7) 
fl(T, 0)= 0, and Eq. (33) reduces to 

~(T, P) 6(T, P) ~(T, 0) 6(T, 0) 
(34) Vn(T, P) Vn(T, O) 
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which has previously been reported by us [54]. If the Anderson-Grfineisen 
parameter is independent of pressure, Eqs. (24) and (25) hold, and Eq. (33) 
leads to 

oc(T, P) =(T, O) 
(35) 

W'(T, e) V"(T, 0) 

Equation (35) (with 6 instead of n) reproduces Anderson's [39] 
formula for expansivity at high pressures. 

3.5. V o l u m e  D e p e n d e n c e  o f  the Gr i ine i sen  P a r a m e t e r  

The thermodynamic Grfineisen parameter 7c is defined as 

o~B V 
7c(r, P) = (36) 

Cv 

where Cv is the heat capacity at constant volume. The properties of 7o are 
of great interest in discussions of the EOS of solids (e.g., Refs. 52 and 89). 
In particular, the volume dependence of Yc is often considered in connec- 
tion with the treatment of shock-wave data (cf. Ref. 55 and references 
therein). 

In the present section we examine the relation between Yc and V given 
by the temperature-dependent Murnaghan approximation. By combining 
Eqs. (31) and (36) we obtain 

7a(T, P) Cv(T, P) 6(T, P) 
V(T,P) 

V(T, O) I L6(T, 0)J ~ (37) 

Eliminating P/B(T, 0) by means of Eq. (9) yields 

7c(T, P) Cv(T, P) 6(T, P) 
)'c(T, O) Cv(T, O) 6(T, O) 

V( T, P ) T, O) 1 n6(T,fl(T'O)o) ([_~[V(T'P)]-"V(T, 0)J - 1 }] (38) 

which gives the volume dependence of the product ?cCv6. If the n 
parameter is independent of T and ~(T, 0)~0,  we have from Eq.(7) 
fl(T, 0) = 0, and Eq. (38) becomes 

7~(T, P) Cv(T, P) 6(T, P) V(T, P) 
- - -  ( 39 )  

7c(T, O) Cv(T, O) 6(T, O) V(T, O) 
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i.e., the product yaCv8 is predicted as proportional to V. When n depends 
on T, Eq. (39) describes only the limiting behavior for V(T, P)/V(T, O) ,~ 1, 
but at larger compressions the predictions of Eq. (39) will overestimate the 
product ~,a(T, P) Cv(T, P) ~(T,~P) if /3(T, O)/8(T, 0) > 0 and will under- 
estimate the product if p(T, O)/,~(T, O)< O. 

In the particular case where 

/~(T, 0) 
- - - =  n (40) 
~(T, 0) 

the volume dependence of Y6 [Eq. (38)] takes a rather simple form, viz., 

yo(T,O) Cv(T,O)8(T,O) V(T,O) 2-- V(T,-~ (41) 

Finally, if the Anderson-Grfineisen parameter is independent of P, 
Eqs. (24) and (25) hold, and Eq. (37) takes the form 

ya(T, Cv(T, P)= g(r) (42) 
P)] 

where g(T) is a function only ofT. At a fixed temperature, Cv and the 
ratio (ya/V) are predicted to vary with pressure in such a way that their 
product remains constant. 

4. SUMMARY AND CONCLUDING REMARKS 

The Murnaghan approximation is a useful tool in the treatment of 
pressure effects on the properties of solids in the low-compression range. In 
the present work we have studied the thermodynamic properties of the 
most general form of the Murnaghan equation, where all its parameters are 
temperature dependent. We have obtained relations describing the pressure 
dependence of the thermal expansivity, the product 0tB, and other thermo- 
dynamic quantities. Our results show that in the Murnaghan approxima- 
tion certain combinations of thermodynamic parameters, viz., ~BO, o~/V", 
and yaCv~/V, vary in a rather simple way with pressure, and we report 
relations describing that variation in terms of properties corresponding to 
P = 0. The present work also illustrates the use of the Anderson-Grfineisen 
parameter in treating pressure effects upon quantities like 0t, ~B, and ?a, 
which are related to the anharmonic behavior of solids. 
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